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Abstract

We construct ample smooth strictly plurisubharmonic non-quadratic solutions to the
Monge-Ampère equation on either cylindrical type domains or the whole complex Euclidean
space C2. Among these, the entire solutions defined on C2 induce flat Kähler metrics, as
expected by a question of Calabi. In contrast, those on cylindrical domains produce a family
of nowhere flat Kähler metrics. Beyond these smooth solutions, we also classify solutions that
are radially symmetric in one variable, which exhibit various types of singularities. Finally,
we explore analogous solutions to Donaldson’s equation motivated by a result of He.

1 Introduction

According to fundamental works by Jörgens [10] in dimension 2 and by Calabi [4] and Pogorelov
[15] in higher dimensions, any entire convex viscosity solution of the real Monge-Ampère equation

det(D2u) = 1 on Rm

must be a quadratic function. See also, for instance, [12]. The similar property no longer holds
for entire plurisubharmonic solutions to the complex Monge-Ampère equation in Cn:

det(∂∂̄u) = 1. (1.1)

Here ∂∂̄u is the complex Hessian of u. Such solutions give rise to Kähler metrics via the complex
Hessian whose associated volume forms are constant. Calabi posted in [5] the question of whether
these Kähler metrics are flat, which still remains open.

Motivated by those results and Calabi’s question, we investigate solutions to (1.1) in C2 that
depend quadratically on one variable. Specifically, for variables (z, w) ∈ C2, we focus on real-
valued solutions that are quadratic only in the z direction:

u(z, w) = a(w)|z|2 + b(w)z2 + b(w)z2 + c(w)z + c(w)z + d(w), (1.2)

where a, b, c and d are smooth functions of w, and a > 0. This particular form enables us to
convert the fully nonlinear equation (1.1) to a system of simpler semi-linear elliptic equations,
whose solutions can be effectively approached. See (2.1)-(2.3).
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In Section 2, by applying existence theorems from [16] for nonlinear systems of Poisson equa-
tions, we construct ample smooth, strictly plurisubharmonic solutions over cylindrical-type do-
mains of the form C × DR for any R > 0, where DR denotes the disc of radius R in C. See
Theorem 2.3. Each of these solutions possesses the special quadric form given in (1.2), yet they
are not quadratic in the w-variable. Note that all these solutions can be trivially extended to the
n dimensional case by adding quadratic terms |z3|2 + · · · |zn|2.

To fully understand Calabi’s question in our setting, we begin in Section 3 by establishing an
obstruction that prevents the induced Kähler metric from being flat.

Theorem 1.1. Let D be a domain in C. Suppose u is a plurisubharmonic solution to (1.1) on
C×D of the form (1.2). Then the corresponding Kähler metric is flat on C×D if and only if b
is holomorphic on D.

Making use of this theorem one can construct solutions to (1.1) whose associated Kähler metric
is nowhere flat over cylindrical-type domains. See Theorem 3.1 and Example 1. In particular,
these examples demonstrate that Calabi’s question does not hold on any bounded domains.

In Section 4, we produce in Theorem 4.1 entire solutions of (1.1) of the special form (1.2) on
C2. Note that the Kähler metrics induced by all these solutions are flat, and therefore do not
provide counterexamples to Calabi’s question. Although it remains unclear whether the question
holds in full generality, we show in Theorem 4.2 that for every entire solutions of the form (1.2),
∂b
∂w̄

must have zeros somewhere.
In addition to the aforementioned smooth solutions, we also explore in Section 5 solutions

that are radially symmetric on w and exhibit singularities. In fact, we derive explicit expressions
for all such solutions. At the end of the section, we present a variety of examples with distinct
singular behavior (see Examples 3-6). Notably, these recover several existing known examples in
the literature, such as B locki [2], He [8], and Wang-Wang [18].

In Section 6, more general forms of solutions that are non-quadratic in both variables are
discussed, for instance, by replacing z in (1.2) with a holomorphic function ϕ of z. As shown in
Theorem 6.1, in order for this to yield a solution to (1.1), the function ϕ must take a very rigid
dichotomous form as described in (6.3) after normalization. Solutions involving such ϕ are then
constructed in Theorem 6.2.

While investigating the geometric structure for the space of volume forms on compact Rie-
mannian manifolds, Donaldson introduced the operator utt∆u − |∇ut|2, where (t, x) ∈ R × Rm,
and the Laplacian ∆ and the gradient ∇ are both with respect to the space x variable. When
m = 2, by complexifying the t direction, Donaldson’s operator can be reduced to a special case of
the complex Monge-Ampère operator det(∂∂̄u). In Section 7, we generalize a result of He [7] on
solutions to

utt∆u− |∇ut|2 = 1, (1.3)

and obtain a larger class of solutions on cylindrical domains R × BR that are quadratic in the t
variable in Theorem 7.1. Here BR is the ball of radius R in Rm. However, for entire solutions,
Theorem 7.2 shows that every entire solution of the form (7.2) must reduce to He’s original case.

2 Solvability on cylindrical domains

We first derive conditions for the coefficients a, b, c and d in (1.2) so that they yield solutions to
(1.1). Since u is real-valued, so are a and d. A straightforward computation gives the complex
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Hessian of u below.

∂∂̄u :=

[
uz̄z uzw̄

uz̄w uw̄w

]
=

[
a aw̄z̄ + 2bw̄z + cw̄

awz + 2b̄wz̄ + c̄w aw̄w|z|2 + bw̄wz
2 + bw̄wz2 + cw̄wz + cw̄wz + dw̄w

]
.

Here fw := ∂f
∂w

for a smooth function f , and similarly fw̄ := ∂f
∂w̄

. Consequently, taking the
determinant of the Hessian, and sorting it out according to the powers of z and z̄, we obtain

det(∂∂̄u) =|z|2
(
aaw̄w − |aw|2 − 4|bw̄|2

)
+ z2 (abw̄w − 2awbw̄) + z̄2

(
abw̄w − 2aw̄b̄w

)
+ z (acw̄w − awcw̄ − 2bw̄c̄w) + z̄

(
ac̄w̄w − aw̄c̄w − 2b̄wcw̄

)
+
(
adw̄w − |cw̄|2

)
.

Thus any solution u to (1.1) of the form (1.2) should satisfy the following system of semilinear
differential equations: 

aaw̄w = |aw|2 + 4|bw̄|2;
abw̄w = 2awbw̄;

acw̄w = awcw̄ + 2bw̄c̄w;

adw̄w = |cw̄|2 + 1.

(2.1)

To further simplify (2.1), noting that a > 0, let

ã := ln a, (2.2)

or equivalently, a = eã. Then aw = eããw and aw̄w = eã (ãw̄w + |ãw|2). This transformation allows
us to rewrite the system to be 

ãw̄w = 4e−2ã|bw̄|2;
bw̄w = 2ãwbw̄;

cw̄w = ãwcw̄ + 2e−ãbw̄c̄w;

dw̄w = e−ã
(
|cw̄|2 + 1

)
.

(2.3)

Namely, any solution to (2.3) on a domain D ⊂ C leads to a solution u to (1.1) on C×D.
To show the local existence of solutions to (2.3), one can make use of the following existence

theorem for general nonlinear systems of Poisson equations in [16].

Theorem 2.1. [16, Theorem 1.4] Let F = (F1, . . . , FN) be a C1,α vector-valued function in
Rm × RN × RmN for some 0 < α < 1. Given any initial jets (c0, c1) ∈ RN × RmN , there exist
infinitely many C2,α solutions v = (v1, . . . , vN) satisfying

∆v = F (·, v,∇v);

v(0) = c0;

∇v(0) = c1

in some small neighborhood of 0 in Rm.

This gives ample smooth solutions for the pair (ã, b) in (2.3) near a neighborhood of 0, whose
jets up to order 1 at 0 can be prescribed arbitrarily. Consequently, a rescaling method can be used
to obtain solutions on any bounded domain. This is due to the special structure of the equation
(1.1), and the fact that if u is a solution on Br for some r > 0, then ũ(z, w) := R2

r2
u(rz/R, rw/R)

is a solution on BR for any R > 0.
Alternatively we present another approach to obtaining infinitely many solutions to (2.3) that

do not rely on the rescaling process, but instead by making use of an existence theorem [16,
Theorem 1.6] on large domains as follows.
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Theorem 2.2. [16, Theorem 1.6] Let F = (F1, . . . , FN) be a C2 vector-valued function of variables
(X, Y ) ∈ RN × RmN , with F (0) = 0 and ∇F (0) = 0. For any R > 0 and 0 < α < 1, there exist
infinitely many C2,α solutions v = (v1, . . . , vN) to the partial differential system

∆v = F (v,∇v) on BR.

Moreover, all these solutions are of vanishing order 2 at 0 ∈ Rm. Namely. v(0) = 0,∇v(0) =
0,∇2v(0) ̸= 0.

It should be pointed out that, although [16] only focuses on real-valued systems, by splitting
v and F into real and imaginary parts accordingly, Theorem 2.1 and Theorem 2.2 can be easily
applied to complex-valued systems that we will be having.

Theorem 2.3. For each R > 0, there exist infinitely many smooth strictly plurisubharmonic
functions that satisfy (1.1) on C×DR. All of these solutions take on a special quadric form (1.2)
in the first variable z.

Proof. Take v = (ã, b) in Theorem 2.2, and F (X1, X2, Y1, Y2, Y3, Y4) = (16e−2X1|Y4|2, 8Y1Y4). One
can check that

∆(ã, b) = F (ã, b, ãw, bw, ãw̄, bw̄),

with F (0) = 0 and ∇F (0) = 0. Theorem 2.2 thus gives rise to infinitely many C2,α solutions
(ã, b) on DR which are of vanishing order 2 at 0. By a standard bootstrapping argument, these
solutions are necessarily smooth on DR.

Now, with each such pair of solution (ã, b), let c be any holomorphic function. Then c auto-
matically satisfies

cw̄w = ãwcw̄ + 2e−ãbw̄c̄w on DR. (2.4)

Finally, substituting such (ã, b, c) into the linear equation:

dw̄w = e−ã
(
|cw̄|2 + 1

)
on DR (2.5)

to solve for a smooth d on DR. Altogether, we have obtained a, b, c and d such that the system
(2.1) is satisfied, and thus u of the form (1.2) with these coefficients provides infinitely many
solutions to (1.1). That the solutions are strictly plurisubharmonic is because we are dealing with
2 × 2 Hessians.

In particular, the theorem generates infinitely many smooth Kähler metrics ∂∂̄u whose volume
forms are constant. In fact, for any smooth positive function f on C×DR, the similar approach as
in the proof can be applied to produce infinitely many smooth strictly plurisubharmonic functions
defined on C×DR that satisfy

det(∂∂̄u) = f on C×DR,

3 An obstruction to a flat metric

In this section we prove Theorem 1.1: an obstruction for a solution to (1.1) of the form (1.2) to
induce a flat Kähler metric. As an application, this leads to the construction of a large class of
solutions, not obtained via rescaling, to (1.1) such that the associated Kähler metrics are nowhere
flat on cylindrical domain C×DR for any R > 0.
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Proof of Theorem 1.1: We first compute the Kähler metric g = ∂∂̄u for a solution u of the form
(1.2).

g =

[
g11̄ g12̄
g21̄ g22̄

]
:=

[
a aw̄z̄ + 2bw̄z + cw̄

awz + 2b̄wz̄ + c̄w aw̄w|z|2 + bw̄wz
2 + bw̄wz2 + cw̄wz + cw̄wz + dw̄w

]
. (3.1)

Since det g = 1, the inverse matrix g−1 of g is

g−1 =

[
g1̄1 g1̄2

g2̄1 g2̄2

]
=

[
aw̄w|z|2 + bw̄wz

2 + bw̄wz2 + cw̄wz + cw̄wz + dw̄w −aw̄z̄ − 2bw̄z − cw̄
−awz − 2b̄wz̄ − c̄w a

]
.

According to the general formulae for Christoffel symbols under a Kähler metric g (see, for
instance, [1] [11]):

Γα
βγ =

∂gγν̄
∂zβ

gν̄α, α, β, γ ∈ {1, . . . , n}, (3.2)

a direct computation gives

Γ1
11 =

∂g11̄
∂z

g1̄1 +
∂g12̄
∂z

g2̄1 = − 2bw̄
(
awz + 2b̄wz̄ + c̄w

)
.

Since the Kähler metric is flat, the curvature tensor R ≡ 0. In particular,

R1
11̄1 = −∂Γ1

11

∂z̄
= 4|bw̄|2 ≡ 0. (3.3)

Namely, b must be holomorphic on D.
Conversely, if bw̄ ≡ 0 on D, then by (2.3)

ãw̄w = 0;

cw̄w = ãwcw̄;

dw̄w = e−ã
(
|cw̄|2 + 1

)
.

(3.4)

From the first equation above, there exists some holomorphic function h on D such that

ã = 2Re(h), and so a = e2Re(h). (3.5)

Letting f := e−ãc̄w, from the second equation in (3.4), one can see that

fw̄ = e−ãc̄w̄w − e−ããw̄c̄w = e−ã(cw̄w − ãwcw̄) = 0.

Namely, f is holomorphic on D and
cw̄ = e2Re(h)f̄ . (3.6)

Finally, plugging (3.6) into the last equation in (3.4) we have

dw̄w = e2Re(h)|f |2 + e−2Re(h). (3.7)

Next we verify that the curvature tensor with respect to the Kähler metric g = ∂∂̄u is zero for
such solutions with bw̄ = 0. Substituting (3.5)-(3.7) into (3.1), the corresponding Kähler metric
becomes

g =

[
g11̄ g12̄
g21̄ g22̄

]
:=

[
eheh̄ eheh̄h′z̄ + eheh̄f̄

eheh̄h′z + eheh̄f eheh̄|h′|2|z|2 + eheh̄h′f̄ z + eheh̄h′f z̄ + eheh̄|f |2 + e−he−h̄

]
.

5



Then the inverse matrix g−1 of g is

g−1 =

[
g1̄1 g1̄2

g2̄1 g2̄2

]
=

[
eheh̄|h′|2|z|2 + eheh̄h′f̄ z + eheh̄h′f z̄ + eheh̄|f |2 + e−he−h̄ −eheh̄h′z̄ − eheh̄f̄

−eheh̄h′z − eheh̄f eheh̄

]
.

Here for any holomorphic function g of the variable w, we use the notation g′ := ∂g
∂w

.
Making use of the formula (3.2) we compute all the Christoffel symbols as follows.

Γ1
11 =

∂g11̄
∂z

g1̄1 +
∂g12̄
∂z

g2̄1 = 0;

Γ1
12 =

∂g21̄
∂z

g1̄1 +
∂g22̄
∂z

g2̄1 = eheh̄h′
(
eheh̄|h′|2|z|2 + eheh̄h′f̄ z + eheh̄h̄′f z̄ + eheh̄|f |2 + e−he−h̄

)
+

+ eheh̄h′ (h′z̄ + f̄
) (

−eheh̄h′z − eheh̄f
)

= h′;

Γ1
21 =

∂g11̄
∂w

g1̄1 +
∂g12̄
∂w

g2̄1 = Γ1
21 = h′;

Γ1
22 =

∂g21̄
∂w

g1̄1 +
∂g22̄
∂w

g2̄1 = eheh̄
(
(h′)2z + h′′z + h′f + f ′) [eheh̄(|h′|2|z|2 + h′f̄ z + h′f z̄ + |f |2) + e−he−h̄

]
+

+
[
eheh̄

[
(h′|h′|2 + h′′h′)|z|2 + ((h′)2 + h′′)f̄ z + (|h′|2f + h′f ′)z̄ + (h′|f |2 + f ′f̄)

]
+ e−he−h̄(−h′)

]
(
−eheh̄h′z − eheh̄f

)
= 2(h′f + (h′)2z) + h′′z + f ′;

Γ2
11 =

∂g11̄
∂z

g1̄2 +
∂g12̄
∂z

g2̄2 = 0;

Γ2
12 =

∂g21̄
∂z

g1̄2 +
∂g22̄
∂z

g2̄2 = eheh̄h′
(
−eheh̄h′z̄ − eheh̄f̄

)
+
(
eheh̄|h′|2z̄ + eheh̄h′f̄

)
eheh̄ = 0;

Γ2
21 =

∂g11̄
∂w

g1̄2 +
∂g12̄
∂w

g2̄2 = Γ2
12 = 0;

Γ2
22 =

∂g21̄
∂w

g1̄2 +
∂g22̄
∂w

g2̄2 = eheh̄
(
(h′)2z + h′′z + h′f + f ′) eheh̄ (−h′z̄ − f̄

)
+

+
[
eheh̄

[
(h′|h′|2 + h′′h′)|z|2 + ((h′)2 + h′′)f̄ z + (|h′|2f + h′f ′)z̄ + (h′|f |2 + f ′f̄)

]
+ e−he−h̄(−h′)

]
eheh̄

= − h′.

Specifically, all the Christoffel symbols are holomorphic. Since for a Kähler metric, all the curva-
ture tensor coefficients vanish, except

Rδ
αβ̄γ = −

∂Γδ
αγ

∂z̄β
, Rδ

ᾱβγ =
∂Γδ

βγ

∂z̄α
, α, β, γ ∈ {1, . . . , n}

and their conjugates, we have the curvature R ≡ 0.

Theorem 3.1. For any R > 0, there exist infinitely many real-analytic plurisubharmonic solutions
to (1.1) on C×DR such that the corresponding Kähler metric is nowhere flat.

Proof. Given any holomorphic function f such that |f | < 1 and |f ′| ≠ 0 on DR, let

ã = ln
|f ′|

1 − |f |2
on DR.
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For example, one can choose f to be any conformal map from DR into D1. Apparently,

a = eã =
|f ′|

1 − |f |2

is real-analytic on DR.
Let b solve

bw̄ =
|f ′|2

2(1 − |f |2)2
on DR.

Indeed, since the right hand side has a Taylor expansion at 0 with radius of convergence R, one can
solve a b by term-by-term integration of the expansion at 0 using the following general formula:

b =
∞∑

i+j=0

bij
j + 1

wiw̄j+1 solves bw̄ =
∞∑

i+j=0

bijw
iw̄j

on its domain of convergence. Consequently, the Taylor expansion of b has radius of convergence
R. Moreover, one can directly verify that the pair (ã, b) satisfies the first two equations in (2.3).
Then as in the proof of Theorem 2.3, we further let c be any holomorphic function so (2.4) is
satisfied, and solve (2.5) for the Taylor expansion of d on DR (again, by term-by-term integration).
Altogether, the function u defined in (1.2) with these coefficients a, b, c and d is a real-analytic
plurisubharmonic solution to (1.1) on C × DR. With such chosen u, the corresponding Kähler
metric is nowhere flat according to (the proof of) Theorem 1.1.

Following the proof of Theorem 3.1, let us produce a concrete real-analytic solution to (1.1) on
C×DR.

Example 1. Letting f(w) = w/R on DR, then f ′ ̸= 0, |f | < 1 on DR. Following the proof of
Theorem 3.1, we have

a = eã =
R

R2 − |w|2
, bw̄ =

R2

2(R2 − |w|2)2
.

In particular, in terms of Taylor expansion at w = 0, bw̄ =
∑∞

n=0
(n+1)|w|2n
2R2n+2 . Thus the term-by-term

integration gives a solution

b =
∞∑
n=0

wnw̄n+1

2R2n+2
=

w̄

2(R2 − |w|2)
.

Further letting c = 0 so that (2.4) is automatically satisfied. Finally we solve d so that (2.5) holds,
which in this case becomes

dw̄w = e−ã =
R2 − |w|2

R
.

One such d is

d = R|w|2 − |w|4

4R
.

Altogether, we obtain a solution to (1.1) on C×DR:

u(z, w) =
R|z|2

R2 − |w|2
+

w̄z2

2(R2 − |w|2)
+

wz̄2

2(R2 − |w|2)
+ R|w|2 − |w|4

4R
, (3.8)

whose induced Kähler metric is nowhere flat since R1
111 = 4|bw̄|2 ̸= 0 on C×DR.

7



It is worth noting that the metric given by the complex Hessian of u in (3.8) is not complete.
Indeed, the path γ(t) := (0, t), 0 < t < R originates from the origin with the initial velocity (0, 1),
and approaches the boundary point (0, R). However, the length of γ with respect to g := ∂∂̄u is∫ R

0

∥γ̇∥gdt =

∫ R

0

√
2gw̄w|γdt =

∫ R

0

√
2

(
R− t2

R

)
dt =

√
2

4
πR

3
2 < ∞.

By the Hopf-Rinow Theorem, it is not complete.

In particular, Calabi’s question fails for any bounded domain in C2, by simply restricting the
solutions in Theorem 3.1 on this domain.

Corollary 3.2. For every bounded domain Ω ⊂ C2, there exist infinitely many real-analytic
plurisubharmonic solutions to (1.1) on Ω such that its induced Kähler metric is nowhere flat.

4 Entire solutions with flat Kähler metrics

In this section, we convert the attention to entire solutions. First we construct ample entire
real-analytic plurisubharmonic solutions to (1.1) on C2 of the quadratic form (1.2).

Theorem 4.1. Given any three entire holomorphic functions h, f and b in w ∈ C, define

a := e2Re(h)

and let c and d be solutions to

cw̄ = af̄ , dw̄w = a|f |2 +
1

a
on C. (4.1)

Then the function u defined in (1.2) with the coefficients (a, b, c, d) given above is an entire real-
analytic plurisubharmonic solution to (1.1) on C2. Moreover, the induced Kähler metric given by
the solution is flat.

Proof. Since h is holomorphic on C, the function a admits a Taylor expansion at 0 with infinite
radius of convergence. Consequently, both af̄ and a|f |2 + 1

a
also have Taylor expansions at 0

with infinite radius of convergence. Therefore, (4.1) can be integrated term-by-term using these
expansions, producing Taylor expansions of c and d with infinite radius of convergence. This
establishes the existence of the coefficients c and d on C. The fact that these particular choices
yield a solution to (1.1) with a flat induced Kähler metric follows directly from the second part
(when bw̄ ≡ 0) in the proof to Theorem 1.1.

In particular, this theorem generalizes the examples by Warren [17], and Myga [13, Proposition
1] where h is holomorphic, and b = c ≡ 0, with flat induced Kähler metrics. That is, none of our
examples yields a counterexample to Calabi’ s question.

Example 2. Letting h = w, f = e−w, and b be any holomorphic function (say, b ≡ 0) in Theorem
4.1, one can see that

u(z, w) = e2Re(w)|z|2 + w̄ewz + wew̄z̄ + e−2Re(w) + |w|2

is an entire solution to (1.1).
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Theorem 4.1 has found a special class of entire solutions to (1.1) of the form (1.2) where Calabi’s
open question is true. A natural question arises whether Calabi’s question is true for any entire
solutions of the form (1.2). Namely,

Question: Is the Kähler metric given by the complex Hessian of any smooth solution to (1.1) on
C2 of the form (1.2) necessarily flat? By Theorem 1.1, this is further equivalent to asking: must
every smooth entire solution of the form (1.2) satisfy the condition bw̄ ≡ 0?

Although it remains unclear for the above question in full generality, we show that bw̄ must
have zeros somewhere on C, as a step toward addressing it. The proof makes use of a non-existence
result of entire solutions by Osserman [14].

Theorem 4.2. For every C2-smooth entire solution to (1.1) on C2 of the form (1.2), the zero set
Zb := {w ∈ C : bw̄(w) = 0} of bw̄ must be nonempty.

Proof. Assume by contradiction that there exists a C2 solution of the form (1.2) such that bw̄ is
nowhere zero on C. Let us revisit the original system (2.3). Letting h := e−2ãbw̄ and making use
of the equation bw̄w = 2ãwbw̄, one has h satisfies

hw = e−2ãbw̄w − 2ãwe
−2ãbw̄ = e−2ã2ãwbw̄ − 2ãwe

−2ãbw̄ = 0 on C.

Namely, h is anti-holomorphic on C, with

bw̄ = e2ãh on C. (4.2)

Moreover, since bw̄ ̸= 0, h is nowhere zero on C.
Plugging it to the equation for ã, we obtain

ãw̄w = 4|h|2e2ã on C. (4.3)

We claim there is no entire solution to (4.3). If not, since h is nowhere zero on C, ln(4|h|) is
harmonic on C, and thus v := ln(4|h|) + ã is a C2 solution to

∆v = e2v on C. (4.4)

However, we recall a nonexistence result of Osserman [14] for solutions to ∆u = f(u) on C: if
f > 0, f ′ ≥ 0 on R and ∫ ∞

0

(∫ t

0

f(s)ds

)− 1
2

dt < ∞,

then there is no C2 solution to ∆u = f(u) on C. One can check that f(s) := e2s in our case
satisfies the above assumptions for f . From this we immediately obtain the nonexistence of entire
solutions to (4.4). But this is a contradiction! The claim is thus proved, and so is the theorem.

Unfortunately the approach used in the proof of Theorem 4.2 no longer works if the function
h there has zeros. This is because the singularity of v cannot be resolved at the zeros of h to yield
a (weak) solution to (4.4) everywhere. In the Appendix we will discuss several cases where the
isolated singularities can, in fact, be resolved. On the other hand, note that due to the holomorphy
of h, the zero set Zb of bw̄, if not empty, is either isolated or the whole C from (4.2). Therefore to
answer Question, by Theorem 4.2 it suffices to consider the case when Zb is isolated.
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5 Solutions that are radially symmetric on w

In this section, we investigate solutions to (1.1) that depends quadratically on the variable z and
exhibit radial symmetry in the variable w. More precisely, the solutions are of the form (1.2),
where a, b, c and d depend solely on |w|. In the following, we derive explicit formulas for all these
functions. Interestingly, such solutions exhibit a wide range of singular behaviors.

Letting t := log |w|2, we shall explore all possible forms of expressions of a, b, c and d in terms
of the variable t. For a radial function h of the variable w, by the chain rule, hw = ht

w
, hw̄ = ht

w̄
,

and hw̄w = htt

|w|2 away from w = 0. Here ht denotes the derivative of h with respect to t. In view

of this, (2.1) can be reduced to a system of ordinary differential equations:
aatt = |at|2 + 4|bt|2;
abtt = 2atbt;

actt = atct + 2btc̄t;

adtt = |ct|2 + et.

(5.1)

To solve the system, let b̃ := bt, so the second equation in (5.1) becomes

ab̃t = 2atb̃.

Separating the two functions and then taking integration on both sides, one gets

b̃ (= bt) = ka2 (5.2)

for any complex constant k.
Plugging (5.2) into the first equation in (5.1), we seek solutions to

aatt − a2t = 4|k|2a4. (5.3)

Let v := at
a

, or equivalently
at = av. (5.4)

Then vt =
aatt−a2t

a2
, and (5.3) can be simplified to a first-order ODE in terms of v:

vt = 4|k|2a2 (5.5)

Now that a coupled system (5.4)-(5.5) is established about (a, v), by separating the variables, we
get

v dv = 4|k|2a da.

Integrating both sides, one can eventually obtain

v2 = 4|k|2a2 + C1,

for any real constant C1 (since a and v are real) such that the right hand side is nonnegative.
Recalling that v = at

a
, hence

at = ±a
√

4|k|2a2 + C1 (5.6)

for any real constant C1 with 4|k|2a2 +C1 ≥ 0, and for the constant k chosen in (5.2). Depending
on the value of k, and then that of C1, we explore all possible expressions of a, b, c and d below.
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Case I: k = 0. A straight forward computation from (5.6) and (5.2) gives

a = C1e
C2t, b = C3 (5.7)

for any real constants C1 > 0 (since a > 0) and C2, and any complex constant C3. Plugging them
into the third and fourth equations in (5.1), we have

c = C4e
C2t + C5,

d =


|C4|2eC2t

C1

+
e(1−C2)t

(1 − C2)2C1

+ C6t + C7, C2 ̸= 1,

|C4|2eC2t

C1

+
t2

2C1

+ C6t + C7, C2 = 1,

(5.8)

where C1 > 0, C2, C6 and C7 are any real constants, and C3, C4 and C5 are any complex constants.

Case II: k ̸= 0. Rewrite (5.6) to be

at = ±2|k|a
√
a2 + C1, (5.9)

where C1 is any real constant such that a2 + C ≥ 0. Separate the variables in (5.9) and then
integrate both sides to get

±
∫

da

a
√
a2 + C1

= 2|k|t + C (5.10)

for any real constant C. Depending on the sign of C1, there are three cases for the integral on the
left hand side of (5.10):

∫
da

a
√
a2 + C1

=



1√
C1

ln

(√
a2 + C1 −

√
C1

a

)
+ C, C1 > 0;

− 1

a
+ C, C1 = 0;

1√
−C1

sec−1

(
a√
−C1

)
+ C, C1 < 0.

Combining these formulas with (5.10), we can solve a explicitly:

a (or − a) =


2
√
C1C2e

2|k|
√
C1t

1 − C2
2e

4|k|
√
C1t

, C1 > 0;

− 1

2|k|t + C2

, C1 = 0;
√
−C1 sec

(
2|k|

√
−C1t + C2

)
, C1 < 0,

(5.11)

where C2 is an arbitrary real constant. The domain of definition for a is wherever the expression
on the right hand side is defined such that a > 0.

Next we solve for b. Recalling that bt = ka2 and combining it with the expression (5.11) of a,
one can immediately obtain

b =



√
C1k

|k|(1 − C2
2e

4|k|
√
C1t)

+ k0, C1 > 0;

− k

2|k|(2|k|t + C2)
+ k0, C1 = 0;

k
√
−C1

2|k|
tan

(
2|k|

√
−C1t + C2

)
+ k0, C1 < 0,

(5.12)
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where C2 is the real constant chosen in (5.11), and k0 is an arbitrary complex constant.
Plugging expressions of a and b (in particular, (5.2) and (5.9)) into the third equation in (5.1)

for c, we further solve

ctt = ±2|k|
√

a2 + C1ct + 2kac̄t.

Writing c = c1 + ic2, where c1, c2 are real functions, and k = k1 + ik2, where k1, k2 are real
constants, and separating the real parts from the imaginary parts in the above expression, we get{

(c1)tt = ±2|k|
√
a2 + C1(c1)t + 2a (k1(c1)t + k2(c2)t) ;

(c2)tt = ±2|k|
√
a2 + C1(c2)t + 2a (k2(c1)t − k1(c2)t) .

(5.13)

This can be rewritten in a matrix form as follows:(
(c1)tt
(c2)tt

)
= A

(
(c1)t
(c2)t

)
,

where

A = ±2|k|
√

a2 + C1I2 + 2aK, with I2 =

(
1 0
0 1

)
and K =

(
k1 k2
k2 −k1

)
.

Note that the constant matrix K has eigenvalues λ = ±
√

k2
1 + k2

2 = ±|k|. So there exists a
constant unitary matrix P that diagonalizes K:

K = P

(
|k| 0
0 −|k|

)
P−1.

Defining the new variables

(
w1

w2

)
= P−1

(
c1
c2

)
, the system can be decoupled into:{

(w1)tt = 2|k|
(
±
√
a2 + C1 + a

)
(w1)t;

(w2)tt = 2|k|
(
±
√
a2 + C1 − a

)
(w2)t.

Thus, without loss of generality, let us assume for simplicity that k is a positive constant and the
”+” sign in (5.13) is taken. It then can be rewritten as{

(ln |(c1)t|)t = 2k(
√
a2 + C1 + a);

(ln |(c2)t|)t = 2k(
√
a2 + C1 − a).

(5.14)

Making use of (5.11), which further gives

√
a2 + C1 =



√
C1(1 + C2

2e
4|k|

√
C1t)

1 − C2
2e

4|k|
√
C1t

, C1 > 0;

− 1

2|k|t + C2

, C1 = 0;
√
−C1 tan

(
2
√
−C1|k|t + C2

)
, C1 < 0,

we take integration directly on both sides of (5.14) to have

(c1)t =



C3,1e
2k

√
C1t(

1 − C2e2k
√
C1t

)2 ;

C3,1

(2kt + C2)2
;

C3,1

1 − sin
(
2
√
−C1|k|t + C2

) ,
(c2)t =



C3,2e
2k

√
C1t(

1 + C2e2k
√
C1t

)2 , C1 > 0;

C3,2, C1 = 0;
C3,2

1 + sin
(
2
√
−C1|k|t + C2

) , C1 < 0,

(5.15)
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where C3,1, C3,2 are any real constants.
Integrating one more time in (5.15), we get

c1 =



C3,1

2k
√
C1C2(1 − C2e2k

√
C1t)

+ C4,1, C1 > 0;

− C3,1

2k(2kt + C2)
+ C4,1, C1 = 0;

C3,1

2
√
−C1k

(
sec

(
2
√

−C1kt + C2

)
+ tan

(
2
√

−C1kt + C2

))
+ C4,1, C1 < 0,

and

c2 =


− C3,2

2k
√
C1C2(1 + C2e2k

√
C1t)

+ C4,2, C1 > 0;

C3,2t + C4,2, C1 = 0;

− C3,2

2
√
−C1k

(
sec

(
2
√

−C1kt + C2

)
− tan

(
2
√

−C1kt + C2

))
+ C4,2, C1 < 0,

where C4,1, C4,2 are any real constants. Thus

c = c1+ic2 =



C3 + C3C2e
2k

√
C1t

2k
√
C1C2(1 − C2

2e
4k

√
C1t)

+ C4, C1 > 0;

− Re(C3)

2k(2kt + C2)
+ iIm(C3)t + C4, C1 = 0;

C3

2
√
−C1k

sec
(

2
√

−C1kt + C2

)
+

C3

2
√
−C1k

tan
(

2
√
−C1kt + C2

)
+ C4, C1 < 0,

(5.16)
where k > 0 and C2 are defined in (5.11) and (5.12), and C3 := C3,1 + iC3,2 and C4 := C4,1 + iC4,2

are arbitrary complex constants.
Finally, one can substitute the expression (5.11) of a, and (5.15) of ct into the fourth equation

in (5.1) to solve for d:

d =



e(1−2k
√
C1)t

2
√
C1C2(1 − 2k

√
C1)2

− C2e
(1+2k

√
C1)t

2
√
C1(1 + 2k

√
C1)2

+

+
1

8k2C
3
2
1 C2

(
C2

3,1

1 − C2e2k
√
C1t

−
C2

3,2

1 + C2e2k
√
C1t

)
+ C5t + C6, C1 > 0;

−(2kt + C2 − 4k)et −
C2

3,1

8k2(2kt + C2)
− C2

3,2

(
kt3

3
+

C2t
2

2

)
+ C5t + C6, C1 = 0;

et
[
(1 + 4k2C1) cos

(
2k

√
−C1t + C2

)
+ 4k

√
−C1 sin

(
2k

√
−C1t + C2

)]
√
−C1(1 − 4k2C1)2

+

+
(C2

3,1 − C2
3,2) tan

(
2k

√
−C1t + C2

)
+ (C2

3,1 + C2
3,2) sec

(
2k

√
−C1t + C2

)
4k2C1

+ C5t + C6, C1 = 0,

(5.17)
for k > 0, C2 and C3,1, C3,2, C4,1, C4,2 defined in (5.11), (5.12) and (5.16) with C3 = C3,1 + iC3,2

and C4 = C4,1 + iC4,2, and any real constants C5 and C6.

Based on the above derivation for solutions to (1.1) that depend radially on w, choosing different
values for the parameters yields the following interesting examples with varying singularities. Note
that the expressions for c do not introduce any additional singularities beyond those arising from
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a, b or t = ln |w|2. For the purpose of studying singularity of solutions, we will consider the
special cases when C3 = C4 = 0, which significantly simplifies the expression for d. We also let
k0 = C5 = C6 = 0 below.

Example 3. Taking k = 0 and C1 = 1, C2 ̸= 1 in (5.7) and (5.8), we obtain a solution to (1.1):

u = |w|2C2|z|2 + (z2 + z̄2) +
|w|2−2C2

(1 − C2)2
.

Different choices of C2 lead to solutions with different regularity. For instance, if C2 = 0, then u
is a (smooth) quadratic function

u = |z|2 + (z2 + z̄2) + |w|2;

if C2 = 3
2
, then u has singularity at w = 0:

u = |w|3|z|2 + (z2 + z̄2) +
4

|w|
;

if C2 = 1
2
, then u is Lipschitz at w = 0:

u = |w||z|2 + (z2 + z̄2) + 4|w|.

In particular, the last function coincides with an example of B locki [2] and He [8] when n = 2,
who showed it is both a pluripotential and viscosity solution.

Example 4. Taking k > 0 and C1 = C2 = 1 in (5.11), (5.12) and (5.17), we obtain a solution to
(1.1):

u =
2|w|4k

1 − |w|8k
|z|2 +

1

1 − |w|8|k|
(z2 + z̄2) +

|w|2−4k

2(1 − 2k)2
− |w|2+4k

2(1 + 2k)2
.

Different choices of k lead to solutions with different regularity. For instance, if k = 1, then u
blows up at w = 0 and |w| = 1:

u =
2|w|4

1 − |w|8
|z|2 +

1

1 − |w|8
(z2 + z̄2) +

1

2|w|2
− |w|6

18
;

if k = 1
4
, then u is Lipschitz at w = 0, and blows up at |w| = 1:

u =
2|w|

1 − |w|2
|z|2 +

1

1 − |w|2
(z2 + z̄2) + 2|w| − 2|w|3

9
,

which is a pluripotential and viscosity solution on C×D1, similar as in [2] and [8].

Example 5. Taking k = 1 and C1 = C2 = 0 in (5.11), (5.12) and (5.17), we obtain a solution to
(1.1):

u = − 1

2 ln(|w|2)
|z|2 − 1

4 ln(|w|2)
(z2 + z̄2) −

(
2 ln(|w|2) − 4

)
|w|2 on C×D1.

This is the example of a pluripotential and viscosity solution given by Wang-Wang [18]. This
solution is in W 1,2

loc ∩ W 2,1
loc but fails to be in W 1,p

loc for any p > 2, or in W 2,q
loc for any q > 1.

Moreover, it is not even Dini continuous near w = 0.
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Example 6. Taking k = −C1 = 1 and C2 = 0 in (5.11), (5.12) and (5.17), we obtain a solution
to (1.1):

u =
1

cos(2 ln(|w|2))
|z|2 +

tan(2 ln(|w|2))
2

(z2 + z̄2) +
|w|2 (−3 cos(2 ln(|w|2)) + 4 sin(2 ln(|w|2)))

25
.

This solution exhibits singularities at |w| = e
π
8 e

kπ
4 for each k ∈ Z. In particular, when k → −∞,

the singularity set accumulates to w = 0. Moreover, this solution is no longer plurisubharmonic
due to the frequent sign change.

We conclude the section with an example of a solution to (1.1) whose singularity set is of real
codimension-one.

Example 7. It is straightforward to see that

u(z, w) =

{
|z − 1|2 + |w|2, Re(z) ≤ 1

2
;

|z|2 + |w|2, Re(z) > 1
2

(5.18)

solves (1.1) on C2 \ X, where X := {(z, w) ∈ C2 : Re(z) = 1
2
} is a real hypersurface of real

codimension-one. Note that since u is is plurisubharmonic and continuous everywhere, the funda-
mental result [3] of Bedford and Taylor guarantees that (ddcu)2 is well-defined as a positive Borel
measure on C2, where d = ∂̄ + ∂, dc = i

2
(∂̄ − ∂). In detail, letting dV be the volume form on C2,

and dS be the surface measure on X, then the measure is

(ddcu)2 = 4dV + 2λX on C2,

where λX is a Lelong current over X defined by λX(ϕ) =
∫
X
ϕdS for any testing function ϕ. In

particular, the example shows that the singularity of u at X is not removable for (1.1).

6 Rigidity of more general solutions

In the previous sections, we considered solutions dependent quadratically on the variable z. A
natural question is to consider a more general form of solutions by, say, replacing z in (1.2) by a
holomorphic function ϕ of z. That is,

u(z, w) = a(w)|ϕ(z)|2 + b(w)ϕ2(z) + b(w)ϕ2(z) + c(w)ϕ(z) + c(w)ϕ(z) + d(w). (6.1)

The complex Hessian of u in (6.1) becomes

∂∂̄u =

[
uz̄z uzw̄

uz̄w uw̄w

]
=

[
a|ϕ′|2 aw̄ϕ

′ϕ̄ + 2bw̄ϕ
′ϕ + cw̄ϕ

′

awϕ′ϕ + 2b̄wϕϕ′ + c̄wϕ′ aw̄w|ϕ|2 + bw̄wϕ
2 + bw̄wϕ2 + cw̄wϕ + cw̄wϕ + dw̄w

]
.

(6.2)
Due to the strict plurisubharmonicity of u, one has ϕ′ ̸= 0 necessarily. By further adjusting the
coefficients (a, b, c, d), we can assume that ϕ is normalized such that

ϕ(0) = 0 and ϕ′(0) = 1.

In order for (6.1) to solve (1.1), the following theorem demonstrates that the choice of ϕ takes
very rigid forms.
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Theorem 6.1. Let u be a smooth solution to (1.1) of the form (6.1) for some holomorphic function
ϕ of z such that ϕ(0) = 0, ϕ′ ̸= 0 and ϕ′(0) = 1, then either

ϕ = z on C,

or there exists some nonzero constant α such that

ϕ =
1 −

√
1 − 2αz

α
on D 1

2|α|
, (6.3)

where the complex square root takes the principal branch.

Proof. Taking the determinant of the Hessian (6.2) and applying (1.1), we obtain

|ϕ′|−2(= |ϕ′|−2 det(∂∂̄u)) =|ϕ|2
(
aaw̄w − |aw|2 − 4|bw̄|2

)
+ ϕ2 (abw̄w − 2awbw̄) + ϕ2

(
abw̄w − 2aw̄b̄w

)
+ ϕ (acw̄w − awcw̄ − 2bw̄c̄w) + ϕ̄

(
ac̄w̄w − aw̄c̄w − 2b̄wcw̄

)
+
(
adw̄w − |cw̄|2

)
.

(6.4)

Write both sides in terms of the Taylor expansion of z at 0. We first collect terms without z on
both sides by letting z = 0. Recalling the normalization assumptions on ϕ, this gives

adw̄w − |cw̄|2 = 1. (6.5)

Collecting the coefficients of the term z in (6.4), one has

acw̄w − awcw̄ − 2bw̄c̄w = −ϕ′′(0). (6.6)

Collecting the coefficients of the term z2 in (6.4), one has

abw̄w − 2awbw̄ +
ϕ′′(0)

2
(acw̄w − awcw̄ − 2bw̄c̄w) = −ϕ′′′(0)

2
+ (ϕ′′(0))2.

Combined with (6.6), one futher gets

abw̄w − 2awbw̄ =
3(ϕ′′(0))2 − ϕ′′′(0)

2
. (6.7)

Collecting the coefficients of the term |z|2 in (6.4), one has

aaw̄w − |aw|2 − 4|bw̄|2 = |ϕ′′(0)|2. (6.8)

Substituting (6.5), (6.6), (6.7) and (6.8) into (6.4), we obtain

|ϕ′|−2 = |ϕ′′(0)|2|ϕ|2 +
3(ϕ′′(0))2 − ϕ′′′(0)

2
ϕ2 +

3(ϕ′′(0))2 − ϕ′′′(0)

2
ϕ2 − ϕ′′(0)ϕ− ϕ′′(0)ϕ + 1. (6.9)

Denoting g := (ϕ′)−1 and taking ∆ on both sides of (6.9), one gets |g′|2 = |ϕ′′(0)|2|ϕ′|2, or
equivalently, ∣∣∣∣g′ϕ′

∣∣∣∣ ≡ |ϕ′′(0)|.

Applying the Maximum Principle to the holomorphic function g′/ϕ′, we infer g′ = eiθ|ϕ′′(0)|ϕ′ for
some θ ∈ [0, 2π). Plugging g = (ϕ′)−1 in, one further sees that

− ϕ′′

(ϕ′)2
= eiθ|ϕ′′(0)|ϕ′.
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Evaluating the above at 0, we get eiθ|ϕ′′(0)| = −ϕ′′(0). Thus ϕ′′ = ϕ′′(0)(ϕ′)3. This is equivalent
to ((ϕ′)−2)

′
= −2ϕ′′(0), and so

ϕ′ =
1√

1 − 2ϕ′′(0)z
.

Consequently, either ϕ′′(0) = 0 in which case ϕ = z, or (6.3) holds with α there equal to ϕ′′(0).
In the latter case, one further computes that ϕ′′′(0) = 3(ϕ′′(0))2. Plugging this and (6.3) back to
(6.9), after simplification we immediately observe that the equation is satisfied everywhere on DR

with R = 1
2|α| . The proof is complete.

As in the case for ϕ = z, the following theorem shows there are many nontrivial solutions with
ϕ taking the form (6.3).

Theorem 6.2. Let Ω be a bounded domain in C2. There exists infinitely many smooth solutions
to (1.1) of the form (6.1) with ϕ defined in (6.3) on Ω.

Proof. By the rescaling method mentioned in Section 2, it suffices to construct a solution of the
form (6.1) in a small neighborhood of 0.

In the case when (6.3) is taken, for instance with α = 1, in order to obtain a solution to (1.1)
of the form (6.1) near 0, according to (6.5), (6.6), (6.7) and (6.8), one looks for the coefficients
a, b, c and d to satisfy 

aaw̄w = |aw|2 + 4|bw̄|2 + 1;

abw̄w = 2awbw̄;

acw̄w = awcw̄ + 2bw̄c̄w − 1;

adw̄w = |cw̄|2 + 1.

As before letting ã = ln a, then 
ãw̄w = 4e−2ã|bw̄|2 + e−2ã;

bw̄w = 2ãwbw̄;

cw̄w = ãwcw̄ + 2e−ãbw̄c̄w − e−ã;

dw̄w = e−ã
(
|cw̄|2 + 1

)
.

(6.10)

Making use of Theorem 2.1, one can obtain infinitely many solutions to (6.10) near a neighbor-
hood of 0. These solutions yield infinitely many solutions to (1.1) of the form (6.1) in a small
neighborhood of 0.

7 Donaldson’s equation

In this section, we investigate solutions to Donaldson’s equation (1.3). Donaldson’s operator is
strictly elliptic when utt > 0,∆u > 0 and utt∆u − |∇ut|2 > 0. He constructed in [7] infinitely
many entire solutions to (1.3) on R× Rm of the form

a0t
2 + b(x)t + c(x), (7.1)

where a0 is a positive constant, and b and c are smooth real functions on x ∈ Rm. He showed that
every solution of the form (7.1) must satisfy

∆b = 0, ∆c =
1

2a0
(|∇b|2 + 1).
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Note that, according to a result of Warren [17], every convex entire solution to (1.3) must be
quadratic.

We shall generalize He’s idea by allowing a0 in (7.1) to depend on x ∈ Rm. That is, we consider
smooth solutions of the form

u(t, x) = a(x)t2 + b(x)t + c(x), (7.2)

where a, b and c are smooth real functions on x ∈ Rm with a > 0. Plugging it to (1.3), one gets

1 = utt∆u− |∇ut|2 = 2a(t2∆a + t∆b + ∆c) − |2t∇a + ∇b|2.
Identifying coefficients of 1, t and t2, we obtain the following nonlinear differential system

a∆a = 2|∇a|2;
a∆b = 2∇a · ∇b;

2a∆c = |∇b|2 + 1.

Since a > 0, making use of the transformation

ã =
1

a
,

one can immediately verifies that ã satisfies

∆ã = 0. (7.3)

There are infinitely many positive harmonic solutions ã on BR. For each such ã, plugging a = 1
ã

into the linear elliptic equation

∆b =
2

a
∇a · ∇b on BR (7.4)

to solve for a smooth solution b on BR, and then to solve

∆c =
1

2a
(|∇b|2 + 1) on BR (7.5)

for a smooth c on BR.

Theorem 7.1. For each R > 0, and a harmonic function ã on BR, define a := ã−1 and let b and
c be solutions to (7.4)-(7.5). Then the function u defined in (7.2) with these coefficients a, b and
c is a smooth solution to (1.3) on R×BR.

In the case of entire solutions, Liouville’s theorem implies that every positive harmonic function
on Rm must be a constant. Hence from (7.3) one has ã ≡ const, and further a ≡ const. Moreover,
(7.4)-(7.5) gives

Theorem 7.2. Every entire solution to (1.3) on R× Rm of the form (7.2) must satisfy

a ≡ const, ∆b = 0, ∆c =
1

2a
(|∇b|2 + 1) on Rm.

In particular, Theorem 7.2 states that in the case of entire solutions, (7.2) reduces to the
situation (7.1) in [7]. On the other hand, in the case when m = 1, since the only harmonic
functions are linear functions, b must be linear, and thus c must be quadratic in Theorem 7.2.
One immediately obtains the following result.

Corollary 7.3. If m = 1, then every entire solution to (1.3) of the form (7.2) must be a quadratic
function in (t, x) ∈ R× R.

It is worth noting that Corollary 3.8 is, in fact, a special case of [17]. This is because when
m = 1, all solutions obtained in Theorem 7.1 and Theorem 7.2 are automatically convex, due to
the conditions utt > 0 and det(D2u) = 1 > 0.
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A Resolution of isolated singularity

Let Ω be a domain in Rm,m ≥ 2. A function u is said to be a weak solution to a nonlinear
differential equation

∆u = f(·, u) on Ω,

if u ∈ L1
loc(Ω), f(·, u) ∈ L1

loc(Ω) and for any testing function ϕ ∈ C∞
c (Ω), one has∫

Ω

u∆ϕ =

∫
Ω

f(·, u)ϕ.

In this Appendix, we shall prove a removable singularity theorem as follows.

Theorem A.1. Let Ω be a domain in Rm containing the origin, m ≥ 2. Let u ∈ C(Ω) if m = 2,

or u ∈ L
m

m−2

loc (Ω) if m ≥ 3, and u be a weak solution to

∆u = f(·, u) on Ω \ {0},

where f ∈ C∞(Rm × R) with f ≥ 0 and ∂f
∂u

≥ 0. Then u ∈ C∞(Ω) and solves

∆u = f(·, u) on Ω.

To prove the theorem, the following Harvey-Polking lemmas (see [6]) are needed for resolving
the isolated singularities. Recall that Dr is the disc in R2 of radius r.

Lemma A.2. If f ∈ L1(D1), and u ∈ C(D1) is a weak solution to ∆u = f on D1 \ {0}, then u
is a weak solution to ∆u = f on D1.

Proof. Since u− u(0) ∈ C(D1), and is also a weak solution to ∆u = f on D1 \ {0}, without loss
of generality assume u(0) = 0. Given 0 < r < 1, let ϕr be a smooth function on D1 such that
ϕr = 1 on D r

2
, ϕr = 0 outside Dr and |∆ϕr| ≲ r−2 on Dr. Then for any testing function ϕ on D1,

(1 − ϕr)ϕ is a testing function on D1 \ {0}. Thus

⟨∆u− f, (1 − ϕr)ϕ⟩ = 0,

and so

⟨∆u− f, ϕ⟩ = ⟨∆u− f, ϕrϕ⟩ = ⟨u,∆(ϕrϕ)⟩ − ⟨f, ϕrϕ⟩.

Passing r to 0, since f ∈ L1(D1),

⟨f, ϕrϕ⟩ ≲
∫
Dr

|f | → 0.

On the other hand,

⟨u,∆(ϕrϕ)⟩ ≲ r−2

∫
Dr

|u| ≤ max
Dr

|u| → 0.

We thus have the desired identity ⟨∆u− f, ϕ⟩ = 0.

The continuity assumption on u in Lemma A.2 can not be dropped, as demonstrated by the
following example.
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Example 8. Let u be a smooth solution to

∆u = 4e2u on D1.

For instance, one can check that u = − ln(1−|x|2) is such a solution. Consequently, v := u− ln |x|
is a smooth solution to

∆v = 4|x|2e2v on D1 \ {0}.

However, v is not a weak solution to

∆v = 4|x|2e2v on D1,

since − 1
2π

ln |x| is the fundamental solution to ∆. Note that v /∈ C(D1), so Lemma A.2 does not
apply.

By slightly adjusting the proof of Lemma A.2, one can resolve isolated singularities in higher
dimensional case, under a weaker assumption on the regularity of u than continuity.

Lemma A.3. Let B1 be the unit ball in Rm,m ≥ 3. If f ∈ L1
loc(B1), and u ∈ L

m
m−2

loc (B1) is a weak
solution to ∆u = f on B1 \ {0}, then u is a weak solution to ∆u = f on B1.

Proof. In view of the proof to Lemma A.2, we only need to verify that r−2
∫
Br

|u| → 0. This is
obvious by Hölder’s inequality:

r−2

∫
Br

|u| ≤ r−2

(∫
Br

|u|
m

m−2

)m−2
m

(∫
Br

1

) 2
m

≲

(∫
Br

|u|
m

m−2

)m−2
m

→ 0

as r → 0.

Next, we prove that under suitable smoothness and growth assumptions on f , any weak solution
in fact belongs to a higher regularity class, thereby becoming a classical solution. This together
with Lemma A.2 and Lemma A.3 proves Theorem A.1.

Proposition A.4. Let Ω be a domain in Rm. Let u be a weak solution to

∆u = f(·, u) on Ω,

where f ∈ C∞(Rm × R) with f ≥ 0, ∂f
∂u

≥ 0. Then u is smooth on Ω.

Proof. Since ∆u ≥ 0 in the sense of distributions, u become subharmonic on Ω after redefining
its values on a measure zero set. See, for instance, [9, Theorem 3.2.11]. Hence u is upper semi-
continuous on Ω. In particular, for every V ⊂⊂ Ω, there exists a constant c > 0 such that u ≤ c
on V . Consequently, by the monotonicity of f with respect to u,

0 ≤ f(·, u) ≤ f(·, c) on V.

This implies ∆u ∈ L∞(V ).
From the W 2,p theory of elliptic equations, we deduce that u ∈ W 2,p(V ) for any p < ∞. The

Sobolev embedding theorem then yields u ∈ C1,α(V ) for all 0 < α < 1. Applying Schauder
theory, we can further obtain u ∈ C3,α(V ). A standard bootstrapping argument eventually gives
u ∈ C∞(V ).
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An immediate consequence of (the proof to) Theorem A.1 is an improved regularity for every
weak solution to ∆u = ecu, where c is a positive constant.

Corollary A.5. Let Ω be a domain in Rm and c be a positive constant. Then every weak solution
to

∆u = ecu on Ω

must be smooth on Ω.

It is natural to ask whether a similar regularity-improving property as in Theorem A.1 still
holds if the condition ∂f

∂u
≥ 0 is dropped, as our approach does not extend to this case. For

instance, the equation ∆u = e−u, where f(u) := e−u satisfies ∂f
∂u

< 0. The following example
demonstrates that the property fails if m ≥ 3. The situation for m = 2 remains unclear.

Example 9. Let m ≥ 3. A direct computation can verify that u(x) = 2 ln |x| − ln(2m − 4) is a
smooth solution to

∆u = e−u on Rm \ {0}.

On the other hand, e−u = 2m−4
|x|2 ∈ L1

loc(Rm), and u ∈ Lp
loc(Rm) for all p < ∞. According to Lemma

A.3, u is a weak solution to
∆u = e−u on Rm.

However, u is not even continuous at 0.
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